

Terminal ductulo-lobular unit (TDLU)

b

Terminal ductulo-lobular unit (TDLU)

Ductal Anatomy

Normal breast

Anatomy of the Female Breast

Normal breast

Normal breast – myoepithelial cells

Normal breast – lactation changes

- Very frequent
- Fertile women (35-55 ys.)
- Neoplastic and non-neoplastic
- Increasingly detected by screening
- Increasingly curable
- Interdisciplinary approach needed

- Inflammatory (mastitis)
 - → Relatively rare
 - → Young women
 - → Post-gravidic / breast-feeding
 - → Post-traumatic
 - → Symptomatic (tension, pain, red discoloration)

PERIDUCTAL MASTITIS

Extralobular ducts lesion: Variably sized cysts Cubic-flat epithelial lining No apocrine metaplasia Foamy macrophages and amorphous debris Periductal inflammation Calcifications Fibrosis

Obliterative mastisis: completely obstructed duct with fibrous plaque

Lobular inflammatory infiltration (lymphocytes)

Mastitis

→ Tuberculous mastitis

Yaoung women, pregnant During secondary (post-primary) TB Miliar, nodular, cold abscess, galactophoritis Caseating granulomas Reactive axillary lymphadenitis

Liponecrosis/granulomatosis

Liponecrosis/granulomatosis

- → Real increase in west countries
- → Favoured by reduced breast-feeding
- → Increasingly detected by screening
- → Associated with hyper-oestrogenism
- → Rare in hereditary conditions (BRCA1-BRCA2)

- Breast tumour diagnosis
 - → Clinical-radio-pathologic correlations
 - → Sub-centimetric lesions identified
 - → Non-nodular lesions
 - Micro-calcifications
 - Parenchymal "distorsions"
 - → Usually asymptomatic

Screening

→ Mini-invasive sampling

Fine-needle aspiration biopsy (≥ 1 cm nodules)

Tru-cut (Parenchymaldistorsions, neo-adjuvant tx)

Mammotome (microcalcifications)

TYPE 1 MICROCALCIFICATIONS

Calcium oxalate, nontingible, bi-rifrangent under polarized light, associated with benign lesions

TYPE 2 MICROCALCIFICATIONS

Calcium phosphate, basophilic, non birifrangent

Clinico-pathological correlations

Diameter> 10mm Flat epithelial lining Apocrine changes, scattered papillary projections

Fibrocystic disease

Very frequent, young women

- Dense breasts
- Bilateral
- Cysts and parenchymal distorsions
- Cyclic modifications (peri-menstrual)
- Painful tension (mastodinia)

Unrelated to breast cancer!

Fibrocystic disease

Non-proliferative changes

- Inflammation
- Fibrosis
- Duct ectasia/cysts
- Apocrine changes

Proliferative changes

- Adenosis (acinar/lobular proliferation)
- Epitheliosis (ductal epithelial proliferation)
- Papillomatosis (intra-ductal projections)

Fibrocystic disease

Early lobular changes, progressive dilation, cyst formation, apocrine changes

Apocrine changes

Fibrocystic disease

Papillary projections

Fibrocystic disease

Microcalcifications

Fibrocystic disease

Hyperplastic changes

Adenosis (increased acini within ductules)

- Florid
- Sclerosing
- Blunt duct
- Microglandular
- Pseudo-tumoral (adenosis tumour)
 - Ductular proliferation
 - Epithelial + myoepithelial cells (not in microglandular)
 - Virtual or cystic lumina
 - Possible evolution in radial scar

ADENOSIS

Increased number of acini with lobular expansion

Sclerosing adenosis

- Architectural distorsion
- Acinar distension
- Increased collagen stroma
- Central sclerotic focus
- Myoepithelial hyperplasia
- Pseudoinfiltration
- Microcalcifications
- Apocrine metaplasia
- No cytologic atypia

MICROGLANDULAR ADENOSIS

No lobular growth pattern

- Glandular structures with monolayered epithelium
- Pseudoinfiltrative growth in fat tissue
- No myoepithelial cells
- Endoluminal secretion
- Rare atypia or mitosis
- Clear cells

APOCRINE ADENOSIS

Apocrine cell change without cystic dilation

GCDFP + (Gross cystic Disease Fluid Protein)

Radial (sclero-elastosic) scar

Small ducto-lobular structures, radiating from central fibrotic core:

- Circumscribed nodular lesion
- Starry configuration
- < 10mm
- Elongated central tubules
- Epiteliosis & adenosis
- Myoepithelial cells
- Microcalcifications

Radial (sclero-elastosic) scar

The lesion seem to develop from peripheral tubular proliferation around obstructed ducts

Radial (sclero-elastosic) scar

- Young women (15-25)
- Well-demarcated nodule/s
- Monolaterale, 20% bilateral
- ≤3 cm
- Fibro-elastic consistency
- Calcifications (pop-corn like)

Fibrous connective tissue

Intracanalicular

Glandular structures

Pericanicular

Focal fibrous proliferation compressing the enclosed glandular structures Ductular proliferation with preserved rounded profile, and concentric fibrous stroma

Caveat! No risk of progression Atypical hyperplasia & carcinoma in situ may coexist

Connective tissue metaplasia

Fibrous Adipose Smooth muscle Bone

JUVENILE FIBROADENOMA

- Very young patients (<20 ys)
- Larger size (>3 cm)
- Mostly pericanalicular
- Hypercellular myxoid stroma

TUBULAR ADENOMA

- Continuum with fibroadenoma
- Less frequent
- Fibro-elastic
- ≤4 cm
- Balanced fibro-epithelial proliferation
- Compact tubules with myoepithelial cells
- Eosinophilic secretion
- Mitotically active

- Extensive apocrine metaplasia Apocrine Adenoma
- Extensive secretory component
 Lactating Adenoma

PHYLLODES TUMOUR

- Rapidly growing, well-demarcated nodule
- Larger size (≥5 cm)
- Older age (>35 ys)
- More aggressive behaviour, depending on Grade

PHYLLODES TUMOUR

- Bossolated surface
- Fleshy appearance
- Possibly infiltrative margins

PHYLLODES TUMOUR

PHYLLODES TUMOUR (BENIGN 60%)

LOW GRADE MALIGNANT 20%

Increased stromal cellularity Rare mitotic figures No cytologic atypia Increased recurrence rate

HIGH GRADE MALIGNANT 20%

Sarcomatous stroma Nuclear pleomorphism Mitotically active (10/10HPF) Heterologous differentiation Frequent recurrences Rare distant metastases

DUCTAL ADENOMA

Glandular proliferation with adenomatous and papillary growth patterns May develop marked fibrotic proliferation, simulating a radial scar

NIPPLE ADENOMA

- Rare
- 40-50 ys.
- Blood discharge
- Nipple enlargement
- Skin erosion
- Simulates Paget's disease

INTRADUCTAL PAPILLOMA

SOLITARY: central, larger, lactipherous ducts MULTIPLE: peripheral, smaller, TDLU

Branching fibrovascular core Epithelial & myoepithelial cells Apocrine or squamous metaplasia Periductal fibrosis Pseudo-infiltrative margins Epithelial hyperplasia <u>+</u> atypia

May progress into papillary carcinoma (decades)
INTRADUCTAL PAPILLOMA

Benign Intraductal Papilloma

Expeript 8 (007) Upproved Williams & William Individual Researce (0.40M to Assertigang Bullion) Batter Franks to Physical Expeription and Habris Taking with william

Ductal papilloma: apocrine metaplasia

Metaplasia squamosa

HYPERPLASIA

Epithelial intra-luminal proliferation

Isolated or in association with benign (fibroadenoma, fibrocystic disease, etc.) or malignant (invasive carcinoma) lesions

- DUCTAL: Interlobular ducts- LOBULAR: TDLU

HYPERPLASIA

- USUAL: Increased cell number with no nuclear/architectural alterations
- **ATYPICAL**: Bland nuclear/architectural alterations
 - Columnar cell alterations
 - Atypical cystic nodules
 - Clinging (in situ) carcinoma
- CARCINOMA IN SITU: Frank nuclear/architectural alterations
 Within the basal lamina
 - 3-tiered grading system

USUAL HYPERPLASIA

DUCTAL

LOBULAR

- Predominantly epithelial cells
- Elongated cells
- Nuclear streaming
- Normochromic , angulated/spindle nuclei
- Bland chromocenters
- Plump myoepithelial cells
- Polymorphic fenestrations
- Rare mitosis, no necrosis
- Partial obliteration of acinar lumina
- No more than 4 cell layers
- Myoepithelial cells recognizable

ATYPICAL DUCTAL HYPERPLASIA / CARCINOMA IN SITU

- Increasingly detected by screening
- Morphologically heterogeneous lesions
- Poor inter-observer reproducibility (ADH vs. low grade DCIS)
- Different risk for progression towards invasive carcinoma
- Risk of over-treatment
- Distinct molecular alterations (LOH)
- Psychologic impact of "carcinoma"

ADH / DCIS

Cytological features

- Monotonous and uniform cells
- Increased N/C ratio
- Rosette-like formations
- Rounding and "standing" nuclei
- Nuclear hyperchromasia
- Mitosis & necrosis rare

Architectural features

- Limited extension (≤ 2mm)
- Scattered ductal structures
- Bridging
- Cribriform, micro-papillary

The D.I.N. (Ductal Intraepithelial Neoplasia) concept

- Standardized diagnostic criteria
- Increased inter-observer agreement
- Progressively increasing risk
- Avoiding the term "carcinoma"
- Closer to other **Grading** systems

DIN 1-2-3

Traditional terminology	DIN terminology
Usual ductal hyperplasia	Usual ductal hyperplasia (UDH)
Flat epithelial atypia	DIN Grade 1a
Atypical ductal hyperplasia (ADH)	DIN Grade 1b
Ductal carcinoma in situ (DCIS) low grade	DIN Grade 1c
Ductal carcinoma in situ (DCIS) intermediate grade	DIN Grade 2
Ductal carcinoma in situ (DCIS) high grade	DIN Grade 3

FLAT EPITHELIAL ATYPIA = DIN 1a

- Hyperplastic lesions (not filling the lumen)
- Minimal:
 - architectural distorsion
 - nuclear pleomorphism
- Low risk of association with invasive cancer
- 3 major morphological presentations:
 - Columnar cell lesions
 - Clinging carcinoma
 - Atypical cystic lobules

FLAT EPITHELIAL ATYPIA = DIN 1a COLUMNAR CELL LESIONS

Columnar cells with abundant cytoplasm Apical vesicles (snouts) Hobnail morphology Intraluminal secretion Bridges & micropapillae Polistratification Microcalcifications

Nuclear atypia may be present (tubular) carcinoma may coexist

FLAT EPITHELIAL ATYPIA = DIN 1a CLINGING CARCINOMA

Flat cells with scarce cytoplasm Nuclear hyperchromasia Intraluminal secretion Polistratification Microcalcifications

FLAT EPITHELIAL ATYPIA = DIN 1a ATYPICAL CYSTIC LOBULES

Enlarged lobular architecture Hypercellular lobules Cystic spaces Columnar cell morphology Intraluminal secretion Polistratification Microcalcifications

ATYPICAL DUCTAL HYPERPLASIA = DIN 1b

- Hyperplastic lesions growing within the lumen
- Minimal:
 - extension ($\leq 2 \text{ mm.}$)
 - architectural distorsion
 - nuclear pleomorphism
- Low risk of association with invasive cancer

MORPHOLOGICAL BREAST CHANGES FROM NORMAL TO INVASIVE CANCER

MORPHOLOGICAL BREAST CHANGES FROM NORMAL TO INVASIVE CANCER

ATYPICAL DUCTAL HYPERPLASIA = DIN 1b

Usual ductal hyperplasia

Atypical ductal hyperplasia DIN 1b

ATYPICAL DUCTAL HYPERPLASIA = DIN 1b

DUCTAL CARCINOMA IN SITU = DIN 1c-3

- Neoplastic lesions extensively growing within the lumen
- Increased:
 - extension ($\geq 2 \text{ mm.}$)
 - architectural distorsion
 - nuclear pleomorphism
- Higher risk of recurrence (DCIS)
- Higher risk of association with invasive cancer

DUCTAL CARCINOMA IN SITU = DIN 1c-3

10-Year Risk of Local Recurrence, Based on DCIS score

DUCTAL CARCINOMA IN SITU = DIN 1c-3

Figure 3: Using the DCIS Score to Determine 10-Year Risk Estimates for an Ipsilateral Breast Event (left) and Invasive Breast Cancer (right)—CI = confidence interval; DCIS = ductal carcinoma in situ.

PROGRESSION TO CANCER = OLD

Progression of BC (IDC) at the level of histological lesions

Usual type ductal hyperplasia does not progess into atypical ductal hyperplasia.

PROGRESSION TO CANCER = NEW

Progression of BC (IDC) at the level of histological lesions

PROGRESSION TO CANCER = NEW

Well differentiated DCIS – DIN 1c

Well differentiated DCIS – DIN 1c with microcalcifications

Well differentiated DCIS – DIN 1c with micropapillae (a) or cribriform pattern (b)

a
Moderately differentiated DCIS – DIN 2 with microcalcifications and necrosis

Poorly differentiated DCIS – DIN 3 with microcalcifications, necrosis and nuclear pleomorphism

LOBULAR HYPERPLASTIC LESIONS

USUAL	Non-distended acini, partly or completely filled with monomorphic cells
	1
ATYPICAL	Poorly distended acini, filled with poorly cohesive monomorphic cells; partial or complete lobular involvement
LOBULAR CARCINOMA	Severely distended acini, filled with cells that may be pleomorphic; possible confluence of adjacent acini: expansion of lobules

LIN 1-2-3

Traditional terminology	LIN terminology	
Usual lobular hyperplasia	Usual lobular hyperplasia (ULH)	
Atypical lobular hyperplasia	LIN Grade 1	
Lobular carcinoma in situ (LCIS) low grade	LIN Grade 2	
Lobular carcinoma in situ (LCIS) high grade	DIN Grade 3	

LIN 1-2-3 Next table + Figure and tables index LIN, grade 1 LIN, grade 2 LIN, grade 3 Loosely cohesive cellular proliferation + + + (+)Preserving distinct ductular outlines - (Virtual confluence) + + Filling the acinar space ± + + +++ (Maximally) Acinar distension -Rarely Nuclear pleomorphisma -Rarely Pure classic signet ring cell population^a --LIN, lobular intraepithelial neoplasia. ^a If present, maximum distension of acini is not required. 80% LIN without ILC LIN with ILC 70% 60% 50% 40% 30% 20% 10% 0%

Relationship between lobular intraepithelial neoplasia and invasive lobular carcinoma. The increasing grade of lobular intraepithelial neoplasia directly correlates with association of invasive lobular carcinoma (*P*=0.01).

LIN2

LIN3

LIN1

LCIS facts

- 25% of all CIS
- Frequently multicentric/bilateral
- ILC in 20-30% (life-time)
- No palpable mass (biopsy incidental finding)
- Better detected by US

Management:

- Clinical + US follow-up (4 mo.)
- Mammography (yearly)
- Chemoprevention (anti-hormonal tx)
- Consider surgery for LIN3 and larger lesions

DUCTAL vs. LOBULAR HYPERPLASIA

Ductal

Lobular

Lobular carcinoma in situ

Usual & atypical lobular hyperplasia = LIN1

Lobular carcinoma in situ, low grade = LIN2

Lobular carcinoma in situ, low grade = LIN2

Lobular carcinoma in situ, high grade = LIN3

Lobular carcinoma in situ, high grade = LIN3

Fig. 40 – a) Neoplasia lobulare classica con acini espansi da cellule regolari. b) Neoplasia lobulare con cellule negative per *caderina* e. c) Diffusione Pagetoide: le cellule della neoplasia lobulare, negative per *caderina* e, si insinuano tra il mioepitelio e l'epitelio secretorio del lume. Queste ultime si riconoscono in quanto conservano la colorazione della membrana cellulare per *caderina* e.

Paget's disease of the nipple

Erosive-ulcerative lesion Mature-older patients Blood nipple discharge Intra-epidermal neoplastic epithelial cells Her2-positive Frequent DCIS in lactiferous ducts Similar to vulvar Paget's disease

Paget's disease of the nipple

Paget's disease of the nipple

- Most frequent cancer in women
- 22% of all malignant neoplasms in women (≤1% in men)
- 6-8% of women develop breast cancer
- 1st cause of cancer-related death in women
- Up to 33% cancer-specific mortality
- Increasing incidence, decreasing mortality in western countries

Predisposing factors:

-Geographical: industrialization, breast-feeding, hypercaloric diet, alcohol intake, low physical activity
-Early menarch (< 12 ys)
-Late menopause (> 54 ys)
-Nulliparity
-Late pregnancy
-Short (< 3 mo.)/no breast-feeding
-Familiarity (mother & sisters)
-Obesity (BMI >25Kg/mq)
-Genetic factors: BRCA1 (17q), BRCA2 (12q12-13)
-Irradiation (Hiroshima, radiotherapy)

Risk factors:

Personal:

- Previous breast cancer (invasive >> in situ)
- Previous DIN/LIN
- Ductal papilloma
- Ovarian / endometrial cancer

Familial: mother or sisters with breast cancer

Li-Fraumeni syndrome

BRCA1 or BRCA2 syndrome

Number of breast cancer cases per 100,000 women

Role of oestrogens:

- Bind to specific nuclear receptors
- Induce specific proliferative effects
- Accentuated in obese and persistent in menopause
- Genotoxic direct effect, mediated by P450 (increased free radicals)
- Phytoestrogens (pesticides, biphenyl-poly-clorurates) accumulates in breast adipose tissue
- Hormone replacement therapy in menopause
- Oral contraceptive?

SYNDROMIC BREAST CARCINOMA

Li-Fraumeni

- Constitutive mutation of p53
- Multiple neoplasms at < 30 ys.
- Breast cancer at < 40 ys.
- Osteosarcoma
- Soft tissue sarcomas at < 45 ys.
- Brain tumours
- Leukemia

BRCA1

- Constitutive mutation of BRCA1 (17q21)
- Juvenile ovarian or breast cancer
 - No previous DIN/LIN
 - ER & PgR negative
 - Her2 negative
- Additional carcinomas (colon, liver, endometrium, cervix)
- Profilactic surgery
- Chemoprevention (Tamoxifen)

BRCA2

- Constitutive mutation of BRCA1 (13q12-13)
- Juvenile ovarian or breast cancer
 - DCIS
 - ER & PgR positive
 - Additional cancers (ovary, salpynx, pancreas, gallbladder)
- Melanoma
- Profilactic surgery
- Chemoprevention (Tamoxifen)

HEREDITARY BREAST CARCINOMA

- BRCA1 & 2 in 80% hereditary breast cancers

- 6-10% of all breast cancers

Molecular screening:

- In high risk patients
- Identification of 1st case
- High cost
- Complex techniques
- Germline mutations
- No cost/effective

- Maximal prevalence: > 45 ys.
- More frequently asymptomatic
- Site: >50 % in UEQ
- Firm nodule with stellate borders
- Skin or nipple retraction = late events
- Association with pre-neoplastic lesions: Carcinoma in situ (DIN or LIN) Ductal papilloma

FNAB: palpable nodules **C1. inadequate C2.** benign lesion **C3.** possibly benign lesion C4. possibly malignant lesion C5. malignant

Core biopsy & mammotome: non-palpable lesions and microcalcifications

B1. normal

- **B2.** benign lesion
- **B3. uncertain malignant potential**
- **B4.** possibly malignant lesion
- **B5.** malignant

sede

Ь

a

21 Nov 2015

INVASIVE BREAST CARCINOMA PROGNOSTIC FACTORS

Patient characteristics	Age (Race)
Disease characteristics	Tumor size Tumor type Tumor grade Axillary lymph node status Peritumoral vascular invasion
Biomarkers	Receptor status (ER, PgR) HER2 expression Ki-67 labeling index
Genetic profile (!)	<i>Mammaprint OncotypeDx PAM50</i>

Main histotypes:

- → Ductal (70%)
- → Lobular (20%)
- → Special types (10%)

Good prognosis:

- Tubular
- Cribriform
- Mucinous
- Papillary
- Adenoid-cystic
- Lobular (classic) G1
- Medullary

Poor prognosis:

- Extensive central necrosis
- Extensive central fibrosis
- Lobular (pleomorphic) G3
- Matrix-producing
- Metaplastic
- Micropapillary
- Apocrine

St. Gallen Endocrine-responsiveness

Incompletely responsive	Non-responsive
 Low ER & PgR 	•ER & PgR
<u>or</u>	both absent
 PgR absent 	
<u>or</u>	
 HER2 overexpr 	
<u>or</u>	
• High Ki-67	
	Incompletely responsive • Low ER & PgR <i>or</i> • PgR absent <i>or</i> • HER2 overexpr <i>or</i> • High Ki-67
INVASIVE BREAST CARCINOMA

Invasive (infiltrating) ductal carcinoma

Invasive (infiltrating) ductal carcinoma

Invasive (infiltrating) lobular carcinoma

Invasive (infiltrating) lobular carcinoma

Fig. 49 – a) Carcinoma tubulare frammisto a CDIS ben differenziato. **b**) Tipico tubulo mostrante una sola fila di cellule.

Cribriform in situ and invasive ca.

Adenoid-cystic carcinoma

Matrix-producing carcinoma

Micropapillary carcinoma

Mucinous carcinoma

Present or future?

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer*†, Hongyue Dai†‡, Marc J. van de Vijver*†, Yudong D. He‡, Augustinus A. M. Hart*, Mao Mao‡, Hans L. Peterse*, Karin van der Kooy*, Matthew J. Marton‡, Anke T. Witteveen*, George J. Schreiber‡, Ron M. Kerkhoven*, Chris Roberts‡, Peter S. Linsley‡, René Bernards* & Stephen H. Friend‡

* Divisions of Diagnostic Oncology, Radiotherapy and Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands ‡ Rosetta Inpharmatics, 12040 115th Avenue NE, Kirkland, Washington 98034, USA

С

lumours

NATURE VOL 415 31 JANUARY 2002 www.nature.com

Present or future?

LUMINAL A LUMINAL B ERB B2+ BASAL LIKE NORMAL BREAST

Molecular apocrine Claudin-low

- Recurrence (ipsi-controlateral)
- Lymphatic invasion
 - Axillary or internal mammary nodes
- Haematogenous dissemination (lung, liver, bone, CNS, adrenal)
- Contiguity dissemination (pleura)
- Ovarian colonization

OVERALL SURVIVAL

5 ys.: St. I = 80%, St. II = 65%, St. III = 40%, St. IV = 10% 30 ys.:

- DCIS: 74%
- Papillary: 65%
- Medullary: 58%
- Ductal: 34%
- Lobular: 29%

Stage	5-year Relative Survival Rate
0	100%
I	100%
IIA	92%
IIB	81%
IIIA	67%
IIIB	54%
IV	20%

Table 2-1 - Breast cancer mortality rate by stage. Source: American Cancer Society

INVASIVE BREAST CANCER Increasing survival and QoL

Early detection

Accurate (clinico-pathological) characterization (NO "one-fits-all") Conservative surgical treatments:

- Lumpectomy / quadrantectomy + RT
- Mastectomy (subcutaneous, nipple-sparing)
- Breast reconstrucion
- Tailored systemic treatments
- Neo-adjuvant (pre-surgical)
- Adjuvant (prophilactic = hormonal, chemo, targeted)
- Metastatic setting
- Palliative