

CORSO DI STUDIO ANNO ACCADEMICO

FISICA 2023/2024

DENOMINAZIONE DELL'INSEGNAMENTO ESPERIMENTAZIONI DI FISICA II

Principali informazioni sull'insegnamento	
Anno di corso	II Anno
Periodo di erogazione	II Semestre (dal 4 marzo al 7 giugno 2024)
Crediti formativi universitari (CFU/ETCS):	8
SSD	FIS/01 – Fisica Sperimentale
Lingua di erogazione	Italiano
Modalità di frequenza	Lezioni in aula: Raccomandata Esperienze in laboratorio: Obbligatoria

Docente	
Nome e cognome	Salvatore My
Indirizzo mail	salvatore.my@uniba.it
Telefono	
Sede	Studio R12 - Dipartimento Interateneo di Fisica
Sede virtuale	Aula Virtuale su MS Teams (codice: s3me0ls)
Ricevimento	Martedì dalle 16:00 alle 18:00 o in altri giorni previo appuntamento via mail

Organizzazione della didattica			
Ore			
Totali	Didattica frontale	Pratica (laboratorio, campo, esercitazione, altro)	Studio individuale
200	48	30	122
CFU/ETCS			
8	6	2	

Obiettivi formativi	L'obiettivo dell'insegnamento è quello di fornire le conoscenze fondamentali per
	l'analisi teorica e sperimentale
	 di circuiti elettrici in corrente continua ed alternata
	o di alcuni fenomeni dell'ottica
Prerequisiti	Sono richieste le conoscenze acquisite nell'insegnamento di Esperimentazioni di
	Fisica I e nell'insegnamento di Fisica II-Modulo A

Metodi didattici	Lezioni frontali in aula ed attività di laboratorio in gruppo

Risultati di apprendimento previsti	- Descrittore di Dublino 1: conoscenza e capacità di comprensione; Conoscenza e comprensione dei metodi di misura di grandezze elettromagnetiche e dei loro limiti.
	 Descrittore di Dublino 2: capacità di applicare conoscenza e comprensione; Gli studenti acquisiranno le capacità per utilizzare strumenti di misura predisporre semplici ed ottimali configurazioni di misura di alcune grandezze elettromagnetiche analizzarne limiti ed incertezze nelle operazioni di misura-
	 -Descrittore di Dublino 3: capacità critiche e di giudizio. Autonomia di giudizio Gli studenti saranno stimolati a potenziare la loro capacità di

ragionamento autonomo e critico mediante la redazione di relazioni di laboratorio in cui dovranno essere discussi metodi e interpretazione dei risultati delle misure eseguite in laboratorio. Al termine dell'insegnamento gli studenti saranno in grado di

- o Individuare il metodo di misura più adatto caso per caso
- o Individuare e stimare le principali fonti di incertezza
- Descrittore di Dublino 4: capacità di comunicare quanto si è appreso.
 - Abilità comunicative

Gli studenti saranno in grado di esporre, oralmente e per iscritto, le proprie conoscenze sui circuiti elettrici e sull'ottica con proprietà di linguaggio e rigore scientifico

- **Descrittore di Dublino 5**: capacità di proseguire lo studio in modo autonomo nel corso della vita.
 - Capacità di apprendere in modo autonomo
 Gli studenti avranno acquisito le competenze necessarie ad
 intraprendere studi successivi che comprendano tematiche di
 laboratorio e di misure di grandezze elettromagnetiche con un alto
 grado di autonomia

Contenuti di insegnamento (Programma)

Circuiti Elettrici

- Elementi ideali e reali:
- Resistori, capacitori, induttori;
- Generatori di tensione e di corrente;
- Topologia di un circuito elettrico;

Circuiti e misure in Corrente Continua

- Leggi di Kirchhoff e loro applicazione;
- Teoremi di sovrapposizione, di Thevenin, di Norton e di reciprocità;
- Misure di corrente, di differenza di potenziale e di resistenza con strumentazione analogica e digitale;
- Incertezze nelle misure elettriche.

Circuiti e misure in Corrente Alternata

- Segnali periodici, aperiodici e casuali;
- Analisi di Fourier;
- Soluzione di circuiti in corrente alternata;
- Metodo simbolico;
- Circuiti RC, filtri passa-basso e passa-alto;
- Circuit RL;
- Circuiti risonanti RLC serie e parallelo;
- Partitore compensato;
- Strumenti di misura in corrente alternata;
- Misure di ampiezza, di fase e di tempo con l'oscilloscopio.
- Il programma di simulazione di circuiti elettrici LTspice.

Ottica Geometrica

- Definizioni e approssimazioni generali nell'Ottica Geometrica
- Elementi ottici
- Immagini e Oggetti
- Specchi, Diottri, Lenti
- Aberrazioni
- L'occhio umano come sistema ottico

	- Strumenti ottici: lente di ingrandimento, telescopio (Keplero e Galileo), microscopio, fibre ottiche
	 Esperienze di Laboratorio previste: Determinazione della caratteristica V-I di un conduttore e misura di resistenza con il metodo voltamperometrico. Misura di resistenza con il ponte di Wheatstone. Circuito RLC serie e misura induttanza. Filtri passa-basso e passa-alto con segnale d'ingresso sinusoidale ed onda quadra. Misura distanza focale di un sistema diottrico centrato mediante verifica della legge dei punti coniugati e con il metodo di Bessel
Testi di riferimento	 Appunti delle lezioni Testi specifici per la parte sui circuiti elettrici e sugli strumenti di misura: R. Bartiromo, M. De Vincenzi – Electrical Measurements in the Laboratory Practice – Springer R. Perfetti – Circuiti Elettrici – Zanichelli Acerbi - Metodi e strumenti di misura – Città studi Per la parte sull'ottica: Qualunque testo di Fisica II con elementi di ottica
Note ai testi di riferimento	Per approfondire la trattazione delle incertezze di misura Taylor-Introduzione all'analisi degli errori-Zanichelli BIPM – Evaluation of measurement data – Guide to the expression of uncertainty in measurement-https://www.bipm.org/en/publications/guides/gum.html
Materiali didattici	

Valutazione	
Modalità di verifica dell'apprendimento	L'esame finale consiste in una prova orale su tutti gli argomenti trattati a lezione e sulle esperienze eseguite in laboratorio. Per essere ammessi a sostenere la prova orale è necessario consegnare prima della prova stessa le relazioni su tutte le esperienze eseguite in laboratorio. La prova orale inizia con la discussione di una delle relazioni presentate a scelta della Commissione d'esame e seguiranno un paio di domande sugli altri argomenti del programma. Nella prova orale gli studenti dovranno dimostrare di avere compreso i contenuti dell'insegnamento.
	Per partecipare alla prova orale è indispensabile la prenotazione su ESSE3.
Criteri di valutazione	Conoscenza e capacità di comprensione: Gli studenti dovranno dare prova di conoscere e di comprendere le leggi alla base dei circuiti elettrici e dei fenomeni dell'ottica
	Conoscenza e capacità di comprensione applicate: Gli studenti dovranno dare prova di conoscere e di saper applicare le leggi alla base dei circuiti elettrici e dei fenomeni dell'ottica per la misura di alcune grandezze elettromagnetiche
	Autonomia di giudizio:

DIPARTIMENTO INTERATENEO DI FISICA

Altro	
Criteri di misurazione dell'apprendimento e di attribuzione del voto finale	Il voto è attribuito in trentesimi e rifletterà il grado di conoscenza dei contenuti dell'insegnamento e della metodologia sperimentale applicata nelle esperienze di laboratorio. L'esame si intende superato quando il voto è maggiore o uguale a 18. Agli studenti che mostrano piena padronanza della materia, anche considerando la capacità di esprimersi con proprietà di linguaggio, sarà assegnato il massimo dei voti (30 e lode).
	Capacità di apprendere: Gli studenti dovranno essere in grado di esaminare ed approfondire in maniera autonoma problematiche in cui è richiesto l'uso delle leggi della fisica ed in particolare le leggi dei fenomeni elettromagnetici
	 Abilità comunicative: Gli studenti dovranno essere in grado di esporre le leggi ed i metodi di misura studiati utilizzando un linguaggio chiaro, appropriato e scientificamente rigoroso
	Gli studenti dovranno mostrare di avere acquisito autonomia e capacità di ragionamento critico sugli argomenti trattati nell'insegnamento