Principali informazioni sull'insegnamento	
Denominazione	Isituzioni di Fisica Nucleare e SubNucleare
dell'insegnamento	
Corso di studio	(L-30) Fisica
Anno di corso	2022-23
Crediti formativi universitari (CFU) / European Credit Transfer and Accumulation System (ECTS): 7 (5L+2E)	
SSD	FIS/04
Lingua di erogazione	Italiana
Periodo di erogazione	marzo-giugno (II semestre) – III anno
Obbligo di frequenza	no

Docente	
Nome e cognome	Domenico Di Bari, Giacomo Volpe
Indirizzo mail	domenico.dibari@uniba.it, giacomo.volpe@uniba.it
Telefono	3479295741 - 3450447992
Sede	Dipartimento Interateneo di Fisica
Sede virtuale	nessuno
Ricevimento (giorni, orari e	Di Bari – Volpe
modalità)	i professori sono sempre disponibili previo appuntamento

Syllabus	
Obiettivi formativi	L'insegnamento ha l'obiettivo di introdurre la fisica nucleare e subnucleare illustrando le proprietà principali che caratterizzano i nuclei, i loro costituenti e le interazioni. Le problematiche sono introdotte utilizzando un approccio fenomenologico.
Prerequisiti	è richiesta la conoscenza dei seguenti argomenti: - elementi fondamentali ed avanzati di calcolo differenziale ed integrale; - meccanica classica (elementare ed analitica) ed elettrodinamica classica; - elementi fondamentali di fisica atomica; - principi fondamentali della relatività ristretta e della meccanica quantistica.
Contenuti di insegnamento (Programma)	Lezioni relative a Istituzioni di Fisica Nucleare Elementi di struttura e sistematica del nucleo: Costituenti del nucleo e dimensioni nucleari - formula semi-empirica delle masse - stabilità dei nuclei - proprietà elettromagnetiche dei nuclei Modelli e fisica del nucleo atomico: Modello a goccia liquida - modello a gas - modello a shell - modello collettivo Proprietà dinamiche dei nuclei: decadimento radioattivo - radioattività indotta Decadimento α : applicazione della formula semiempirica delle masse - relazione tra energia della particella α e tempo di dimezzamento (relazione di Geiger-Nuttall) - Teoria di Gamow - Meccanismo del decadimento - Spettri α - Radiazione α a corto e a lungo range - Fattore di impedimento. Decadimento β : modi del decadimento - Ipotesi del neutrino - Spettro energetico - Teoria di Fermi - Tempo di vita media - Classificazione delle transizioni β - Cattura elettronica. Decadimento γ : transizioni radioattive nei nuclei - Probabilità di transizione - Regole di selezione - Conversione interna - Isomeria nucleare Fissione e fusione nucleare. Lezioni relative a Istituzioni di Fisica Subnucleare Principi di funzionamento e principali caratteristiche degli acceleratori di particelle. Sezione d'urto. La "zoologia" delle particelle. Le antiparticelle: scoperta del positrone e dell'antiprotone. Scoperta del muone e del pione; differenza fra le due particelle. Scoperta delle particelle strane, determinazione delle masse e vite medie. Massa effettiva. Decadimenti a due e a più corpi; Q valore. Probabilità di
	transizione (regola d'oro di Fermi). Prime leggi di conservazione: numero barionico e numeri leptonici, i due neutrini ν_e e ν_μ , il leptone τ e il terzo neutrino ν_τ . Le interazioni fondamentali e la loro intensità. Unità di misura.

Numeri quantici delle particelle e leggi di conservazione. Il momento angolare: richiami su operatori e autofunzioni, armoniche sferiche, composizione di momenti angolari e coefficienti di Clebsh-Gordan, spin e statistica.
composizione di momenti angolari e coefficienti di Clebsh-Gordan, spin e
statistica.
L'isospin: indipendenza delle forze nucleari dalla carica, conservazione
dell'isospin nell'interazione pione-nucleone.
La stranezza: paradosso "produzione forte - decadimento lento", produzione
associata, formula di Gell-Mann e Nishijima, conservazione e non conservazione
della stranezza nelle diverse interazioni.
La parità: parità orbitale e intrinseca, parità del pione, conservazione e non
conservazione della parità nelle diverse interazioni.
La coniugazione di carica: autostati di C, conservazione e non conservazione di C
nelle diverse interazioni, decadimento del K° e rigenerazione, violazione di CP. Parità G.
Riflessione temporale: teorema CPT, bilancio dettagliato e spin del pione. Cenni
sulle risonanze. Panoramica delle principali risonanze.
Simmetrie e modello a quark statico
Modello di Fermi-Young, modello di Sakata. Simmetrie unitarie e ipotesi dei
quark: ottetto e decupletto barionico, formula di massa, ottetti mesonici e
mescolamento, spettroscopia dei sistemi quark-antiquark, ipotesi del colore.
Cenni sull'ipotesi del charm, scoperta della $J/\Psi\;$ e delle particelle con charm. I
quark b e t.
Interazioni deboli. Forma generale dell'interazione. Interazione corrente-
corrente. Teoria V-A.
Testi di riferimento <u>Nucleare:</u>
Kenneth ,S. Krane: Introductory Nuclear Physics, Ed. J.Wiley & Sons
Altri testi:
B. Povh, K.Rith: Particelle e Nuclei, Ed. Bollati Boringhieri
E.Segré: Nuclei e Particelle, Ed. Zanichelli
Copia delle trasparenze distribuite a lezione. (Tale materiale può essere usato
solo come linea guida nello studio degli argomenti trattati)
SubNucleare:
Dispense del prof. B. Ghidini (per gentile concessione) (Tale materiale può essere
usato solo come linea guida nello studio degli argomenti trattati)
S. Braibant, G. Giacomelli, M. Spurio "Particelle e interazioni fondamentali",
Springer
D.H. Perkins: "Introduction to High Energy Physics", Addison-Wesley
B. Povh, K. Rith, C. Sholz, F. Zetsche: "Particelle e Nuclei - Un'introduzione ai
concetti fisici", Bollati Boringhieri
Contects jister , bonds bornighten
Testi di consultazione :
E. Byckling, K. Kajantie: "Particle Kinematics", J. Wiley & Sons
D. Griffiths: "Introduction to Elementary Particles", J. Wiley & Sons
B. R. Martin, G. Shaw: "Particle Physics", J. Wiley & Sons
Note ai testi di riferimento

Organizzazione della didattica			
Ore			
Totali	Didattica frontale	Pratica (laboratorio, campo, esercitazione, altro)	Studio individuale
70	40	30	175
CFU/ETCS			
7	5	2	

Metodi didattici	Lezioni frontali ed esercitazioni

Risultati di apprendimento	
previsti	

Conoscenza e capacità di comprensione	Acquisizione delle principali nozioni che stanno alla base della sperimentazione e fenomenologia che hanno portato alla descrizione dei nuclei, delle particelle elementari e delle loro interazioni a livello fondamentale.
Conoscenza e capacità di comprensione applicate	Conoscenza delle leggi e le proprietà dei decadimenti radioattivi, la fusione e la fissione insieme ai processi fisici e alle interazioni che li determinano. Conoscenza della struttura dei nuclei e dei principi che stanno alla base dei modelli che descrivono l'organizzazione dei nucleoni. Nel settore delle particelle, conoscenza e identificazione degli effetti dovuti ai costituenti e alle simmetrie delle interazioni che intervengono in fase di formazione e decadimento. Conoscenza delle proprietà dei mediatori delle diverse interazioni e riconoscimento dei processi elettromagnetici, forti e deboli
Competenze trasversali	Abilità comunicative Acquisizione di competenza nella comunicazione in lingua italiana di concetti piuttosto complicati

Valutazione	
Modalità di verifica dell'apprendimento	Il voto finale è valutato dalla Commissione in base all'esito della prova orale.
Criteri di valutazione	Nella prova orale sono valutate le capacità di spiegare gli argomenti ad altre persone, collegare diversi parti del programma, utilizzare il linguaggio scientifico introdotto nel corso e il formalismo matematico in maniera adeguata al livello del corso.
Criteri di misurazione dell'apprendimento e di attribuzione del voto finale	Il voto finale è attribuito in trentesimi. L'esame si intende superato quando il voto è maggiore o uguale a 18. È prevista l'assegnazione del massimo dei voti con lode (30 e lode). La lode viene attribuita quando lo studente abbia dimostrato piena padronanza della materia.
Altro	