

## Bari CdS DENTISTRY AND DENTAL PROSTHETICS FIRST YEAR – A.Y. 2024-2025 CHEMISTRY

| General information         |                                                          |
|-----------------------------|----------------------------------------------------------|
| Course name                 | Chemistry                                                |
| Year of the course Academic | First year                                               |
| calendar                    | Second semester                                          |
| Credits (CFU/ETCS)          | 6 CFU                                                    |
| SSD                         | Biochemistry BIO/10                                      |
| Language                    | Italian                                                  |
| Mode of attendance          | Attendance is governed by the Course Teaching Regulation |

| Professor/ Lecturer    |                                                                       |
|------------------------|-----------------------------------------------------------------------|
| Name and Surname       | Giuseppe Capitanio                                                    |
| E-mail                 | giuseppe.capitanio@uniba.it                                           |
| Department and address | Department of Translational Biomedicine and Neuroscience<br>(DiBraiN) |
|                        | Nuovo Complesso delle Scienze Biomediche                              |
|                        | Policlinico, Piazza G. Cesare, 11 - Bari                              |
| Virtual room           | Teams platform, code v44ry3j                                          |
| Reception              | Every day by email appointment or Teams platform, code                |
|                        | v44ry3j                                                               |

| Work schedule |          |                                                                               |                                         |
|---------------|----------|-------------------------------------------------------------------------------|-----------------------------------------|
| Hours         |          |                                                                               |                                         |
| Total         | Lectures | Hands-on (laboratory,<br>workshops, working<br>groups, seminars, field trips) | Out-of-class study hours/<br>Self-study |
| 150           | 60       |                                                                               | 90                                      |

| Syllabus            |                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Objectives | Objective 1                                                                                                                                                                                                                                                                                                                                                 |
|                     | Knowledge of the structure and transformations of matter<br>and molecular phenomena that find direct or indirect confir-<br>mation in clinical-medical applications, with particular regard<br>to acid-base equilibria, physiological buffers, laws and solubil-<br>ity of gases, osmotic phenomena, properties of solutions,<br>electrochemical potential. |
|                     | Objective 2                                                                                                                                                                                                                                                                                                                                                 |
|                     | Knowledge of the functional groups of the main organic mol-<br>ecules and their reactivity from the perspective of metabolic                                                                                                                                                                                                                                |

|                      | mechanisms and understanding the function of the macro-<br>molecules of the human body.                                                                                                                                                                                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Objective 3                                                                                                                                                                                                                                                                                            |
|                      | Knowledge of the main classes of macromolecules (carbohy-<br>drates, lipids, proteins, nucleic acids, vitamins and coen-<br>zymes) present in the human body, with particular attention<br>to the structure-function relationship and their possible in-<br>volvement in physiopathological processes. |
|                      | Objective 4                                                                                                                                                                                                                                                                                            |
|                      | Knowledge of the general characteristics of catalysts.                                                                                                                                                                                                                                                 |
| Course prerequisites | Knowledge of the basics of chemistry, physics and<br>mathematics necessary to pass the entrance test to the CdL<br>in Medicine and Surgery.                                                                                                                                                            |

| Teaching strategies | The training activity is carried out through frontal lessons in |
|---------------------|-----------------------------------------------------------------|
|                     | the classroom with the use of audio-visual systems with         |
|                     | interactive methodology based on the interaction between        |
|                     | teacher and student.                                            |
|                     |                                                                 |

| Expected learning outcomes          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge and understanding ability | The student will have to acquire a good knowledge and<br>understanding of the general principles of inorganic<br>chemistry, knowledge of the structure of the main carbon<br>compounds and their reaction mechanisms. Furthermore, the<br>student will have to acquire a good knowledge of biological<br>macromolecules, the structure and function of oxygen<br>transporters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Application of knowledge and        | The student will have to acquire skills and competences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| understanding ability               | aimed at being able to translate the theoretical information<br>acquired during the course to scientific contexts specific to<br>the dental profession.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Soft skills                         | Autonomy of judgement<br>At the end of the course the student must be able to<br>independently discuss and critically analyze the chemical-<br>physical properties of the inorganic, organic and<br>biochemically interesting molecules that have been studied<br>during the course.<br>Autonomy of judgment will be stimulated during the delivery<br>of frontal lessons by involving students in solving questions<br>and exercises proposed by the teacher in the classroom.<br>Communication skills<br>At the end of the course the student must be able to expose<br>and explain one's chemical knowledge with logical rigor,<br>correct language and scientific terminology. Furthermore, the<br>student must be able to reproduce the main structures of<br>inorganic molecules, organic and of biochemical interest.<br>Ability to learn<br>At the end of the course the student must be able to evaluate |



## **SCUOLA DI MEDICINA**

|                   | their knowledge and skills and, consequently, to implement                  |
|-------------------|-----------------------------------------------------------------------------|
|                   | and/or update them by independently drawing from texts,                     |
|                   | scientific articles and online platforms.                                   |
| Content knowledge | INTRODUCTION                                                                |
|                   | Identification, classification, composition of matter. Elements,            |
|                   | compounds and mixtures. Atoms, molecules, ions. Relative                    |
|                   | atomic masses. Avogadro's number. Absolute atomic masses.                   |
|                   | Mole. Chemical formulas. Molecular weight and formula                       |
|                   | weight. Writing and balancing chemical equations. States of                 |
|                   | aggregation of matter. Molecular kinetic theory of ideal gas.               |
|                   | Real gases: Van der Waals equation. Maxwell-Boltzmann                       |
|                   | distribution. Nomenclature of inorganic compounds.                          |
|                   | ATOMIC STRUCTURE AND PERIODIC TABLE                                         |
|                   | The fundamental particles of the atom. The atomic number.                   |
|                   | The atomic mass number. Isotopes. The atom according to the                 |
|                   | wave mechanical theory. Electronic configuration of the                     |
|                   | elements. The periodic table. Periodic properties of elements:              |
|                   | atomic dimensions, ionization energy, electronic affinity,                  |
|                   | electronegativity.                                                          |
|                   | CHEMICAL BONDS                                                              |
|                   | Lewis symbolism. Ionic bond. Factors influencing ionic bond                 |
|                   | formation. Covalent bond. Lewis structure of molecules.                     |
|                   | Properties of the covalent bond and bond order. Resonance.                  |
|                   | The coordinated covalent bond. Polarity of molecules.                       |
|                   | develops of molecules. Theory of repulsion of electron                      |
|                   | orbitals Molecular orbital theory Paramagnetism of ovvgen                   |
|                   | Reactive oxygen species Metallic hond Structure and                         |
|                   | properties of solids. Intermolecular forces.                                |
|                   |                                                                             |
|                   | CHEMICAL THERMODYNAMICS                                                     |
|                   | Thermodynamic systems. State functions. The first principle of              |
|                   | thermodynamics. Heat of reaction. Enthalpy. Hess's law. Heat                |
|                   | of formation and entropy Reversible and irreversible                        |
|                   | transformations. The second principle of thermodynamics                     |
|                   | Free energy and useful work. Free energy and balance. Third                 |
|                   | law of thermodynamics.                                                      |
|                   | CHEMICAL KINETICS                                                           |
|                   | Reaction rate. Rate law. Reaction order. Integrated equation                |
|                   | of the rate of a first order reaction. $t_{1/2}$ of a first order reaction. |
|                   | Reaction mechanisms. Molecularity. Collision theory. Effective              |
|                   | collisions. Transition state theory. Effect of temperature on               |
|                   | reaction speed. Arrhenius equation. Catalysis. Chain                        |
|                   | reactions.                                                                  |
|                   | SOLUTIONS                                                                   |
|                   | Composition of solutions. Effect of temperature on                          |
|                   | solubilization. Concentration of a solution. Ways of expressing             |
|                   | the concentration of a solution. Henry's Law. Ostwald's                     |



| dilution law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHEMICAL EQUILIBRIA<br>Law of action of the masses. Fauilibrium constant                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thermodynamics and chemical equilibrium. Activity and concentration. Chemical potential. Le Chatelier principle.                                                                                                                                                                                                                                                                                                                                                                       |
| ACIDS AND BASES<br>Acids and bases according to Arrhenius. Acids and bases<br>according to Bronsted-Lowry. Acids and bases according to<br>Lewis. Strength of Lewis acids and bases. Octahedral<br>coordination complexes.                                                                                                                                                                                                                                                             |
| ACID-BASE EQUILIBRIA IN AQUEOUS SOLUTION<br>The ionic product of water. pH concept. Calculation of the pH<br>of strong acids and bases. Weak acids and bases: Ka and Kb,<br>pKa and pKb. Calculation of the pH of weak acids and bases:<br>application of Ostwald's dilution law. Buffer systems. Blood<br>and cell buffers. pH indicators. Acid-base titrations. Titration<br>curves. Amino acid titration curve. Dismutation reactions.<br>Metathesis reactions. Solubility product. |
| ELECTROCHEMISTRY<br>Electrochemical potential of electrode. Redox couplereduction<br>potential. Battery. Battery potential. Measurementof redox<br>potentials. Spontaneity of redox reactions. Nernst's equation.<br>Concentration batteries. Potentiometric pH measurement.<br>Electrolytic conduction. Electrolysis cells: electrolysis of<br>molten salts, electrolysis of water.                                                                                                   |
| ALKANES<br>Normal, branched, cyclic alkanes. Conformation of organic<br>molecules. Nomenclature. Combustion reaction. Carbon<br>oxidation states. Radical substitution: halogenation of<br>methane and higher alkanes.                                                                                                                                                                                                                                                                 |
| ISOMERISM<br>Constitutional isomerism. Stereoisomerism. Chiral centers.<br>Enantiomers. Optical activity. Polarized light and polarimeter.<br>Configuration of molecules. R/S and D/L systems. Racemes.<br>Compounds with multiple chiral centers. Meso compounds.                                                                                                                                                                                                                     |
| NUCLEOPHILIC SUBSTITUTIONS<br>Inductive and mesomeric effects. Halides. Mono and<br>bimolecular nucleophilic substitutions. Stability and reactivity.<br>Stabilization of carbocations. Mono- and bimolecular<br>elimination reactions.                                                                                                                                                                                                                                                |
| ALKENES AND ALKYNES<br>Nomenclature of unsaturated hydrocarbons. Structure of<br>alkenes. Hydrogenation reaction. Electrophilic addition<br>Reaction. Markownikoff rule. Chain and step polymerization.                                                                                                                                                                                                                                                                                |



## **SCUOLA DI MEDICINA**

| Alkynes: structure and reactivity. Conjugated dienes:structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ALCOHOLS<br>Acidity and basicity. Dehydration reaction of alcohols:<br>Zaitsev's rule. Alkoxides. Thiols. Synthesis of ethers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ALDEHYDES AND KETONES<br>Carbonyl carbon. Nucleophilic additions. Semiacetals and<br>acetals. Amines. Schiff Bases. Keto-enol tautomerism. Basic<br>and acid-catalyzed aldol condensation.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CARBOXYLIC ACIDS AND DERIVATIVES<br>The carboxyl group. Structure and acidity. Fischer<br>esterification. Saponification reaction. Claisen condensation.<br>Thioesters. Amides. Anhydrides. Phosphoanhydrides and ATP.<br>Dicarboxylic acids. Keto acids.                                                                                                                                                                                                                                                                                                                                                                                       |
| ARENAS<br>Structure of benzene according to valence bond and<br>molecular orbitals. Resonance energy. Aromaticity. Huckel's<br>rule. Electrophilic aromatic substitution. Nomenclature of<br>substituted benzenes. Mesomeric and inductive effects on<br>disubstitution: activating and deactivating groups. Phenols<br>and quinones. Heterocyclic aromatic compounds.                                                                                                                                                                                                                                                                          |
| CARBOHYDRATES<br>Monosaccharides: trioses, pentoses, hexoses, epimers,<br>cyclization, anomers, mutarotation. Monosaccharide<br>derivatives. Disaccharides: Maltose, Cellobiose, Lactose,<br>Sucrose. Polysaccharides: Starch, Glycogen, Cellulose.<br>Heteropolysaccharides: Mucopolysaccharides, Proteoglycans.                                                                                                                                                                                                                                                                                                                               |
| LIPIDS<br>Classification. Fatty acids. Triacylglycerols. Basic hydrolysis of<br>triglycerides. Phosphoglycerides. Sphingolipids. Terpenes.<br>Steroids. Lipid composition of biological membranes.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PROTEINS<br>Amino acids: classification based on the lateral group R. Acid-<br>base properties of amino acids. The peptide bond.<br>Polypeptides. Primary structure of proteins. Angles $\phi$ and $\Psi$ .<br>Secondary structure of proteins: $\alpha$ -helical and $\beta$ -sheet<br>structures. Tertiary structure and quaternary structure of<br>proteins. Fibrous proteins: fibroin, $\alpha$ -keratin, collagen.<br>Globular proteins. Protein denaturation and folding.<br>Myoglobin and hemoglobin: structures and functions.<br>Molecular mechanism of $O_2$ transport. Factors that modify the<br>affinity of hemoglobin for $O_2$ . |
| NUCLEIC ACIDS<br>Structure of nitrogenous bases. Nucleosides. Nucleotides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |





|                    | Structure of DNA: A, B, Z. Structure of RNA.                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                    | WATER SOLUBLE VITAMINS AND COENZYMES<br>Classification of vitamins. Vitamins: B2, B3. Coenzymes FAD<br>and NAD <sup>+</sup> . |
| Texts and readings | Recommended texts                                                                                                             |
|                    | GENERAL CHEMISTRY:                                                                                                            |
|                    | Petrucci et al. – Chimica Generale (Ed. Piccin)                                                                               |
|                    | Kotz et al. – Chimica (Ed. EdiSES)                                                                                            |
|                    | Whitten et al. Chimica (Ed. Piccin)                                                                                           |
|                    | ORGANIC CHEMISTRY AND PROPAEDEUTIC BIOCHEMISTRY:                                                                              |
|                    | Brown-Poon – Introduzione alla Chimica Organica (Ed. EdiSES)                                                                  |
|                    | Russo et al. – Chimica Organica (Casa Editrice Ambrosiana)                                                                    |
| Notes, additional  | Additional material to the reference texts, where not available                                                               |
| materials          | online through bibliographic reference, will be made available                                                                |
|                    | on the dedicated Teams platform.                                                                                              |
| Repository         | Course Teams channel                                                                                                          |

| Assessment                         |                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment methods                 | The exam includes an oral interview during which the acquisition of the expected knowledge will be verified. The student will also be asked to represent the schemes of the main molecules and reactions on the blackboard (or on a sheet of paper).                                                                                                         |
| Assessment criteria                | The oral exam includes questions on the topics covered<br>during the lessons; each answer will be evaluated based on<br>the correctness, completeness and clarity of the topic<br>covered by the question. Honors can be awarded when the<br>student has demonstrated full mastery of the subject and<br>excellent presentation skills during the interview. |
| Final exam and grading<br>criteria | The commission will express the evaluation out of thirty. The exam is considered passed when the grade is greater than or equal to 18. The maximum grades with honors (30 cum laude) will be assigned.                                                                                                                                                       |
| Altro                              |                                                                                                                                                                                                                                                                                                                                                              |
|                                    |                                                                                                                                                                                                                                                                                                                                                              |