

COURSE OF STUDY: Medicina e Chirurgia (LM41)

ACADEMIC YEAR: 2024/25 INTEGRATED COURSE: BIOCHEMISTRY (8 CFU/ECTS) ACADEMIC SUBJECT: BIOCHEMISTRY (8 CFU/ETCS) CANALE: AK

General information	
Year of the course	First year
Academic calendar	Second semester 2024/25
Credits (CFU/ETCS)	8
SSD	BIO/10 Biochemistry
Language	ITALIAN
Mode of attendance	Attendance is governed by the Course Teaching Regulations

Professor/Lecturer	
Name and Surname	Gaetano Villani
E-mail	gaetano.villani@uniba.it
Telephone	O805448542
Department and address	Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN)
	Nuovo Complesso delle Scienze Biomediche - I° piano - studio n. 12
	Policlinico, Piazza G. Cesare, 11 - Bari
Virtual room	Teams channel, Skype (the links will be communicated in class)
Office Hours	Every day between at the teacher's office/TEAMS, SKYPE (by email appointment
	only)

Work schedule	9		
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study Hours
200	80		120
CFU/ETCS			
8	8		

Learning	The central objective of the course is to provide students with a method of
Objectives	critical reasoning about the biochemical metabolic aspects of Medicine. Specifically, this course provides an overview of the major metabolic pathways and their functional correlations in the human organism. Biochemical processes that characterize the specialized function of different tissues and organs will also be described. The theoretical knowledge gained from this Biochemistry course
	will provide an essential basis for subsequent applications at the professional level.
Course prerequisites	The correct understanding of the principles of biochemistry presupposes a good knowledge of the basics of physics, of general, inorganic and organic chemistry and of cellular biology, in order to appreciate the relationships (even quantitative) between the different biochemical pathways and their integrated regulation in the same cell. To be admitted to take Biochemistry the student must have passed the Chemistry and Propaedeutic Biochemistry exam.
Tooching stratogies	The training activity is carried out through frontal lessons in the classroom with

Teaching strategies	The training activity is carried out through frontal lessons in the classroom with
	the use of audio-visual systems with interactive methodology based on the
	interaction between teacher and student. It also includes the analysis of

"scientific cases" on specific topics, as a moment of in-depth study and application of biochemical knowledge and professional skills, consistently with the training objectives.

Expected learning	
outcomes in terms	
of	
-	
Knowledge and understanding	The student will have to acquire a good knowledge and understanding of the main biological molecules, metabolic pathways and their regulation, also at the
on:	level of tissues, organs and systems. Particular attention will be given to the
	ability to grasp the fundamental aspects of bioenergetics and the integration of
	metabolic flows, both catabolic and anabolic, and the role of coenzymes,
	vitamins and energy-rich compounds in cellular and tissue homeostasis.
Applying knowledge and	The student will have to acquire skills and competences aimed at being able to
understanding on:	translate the theoretical information and operational skills acquired in the field of
	biochemistry to the scientific and technological contexts of the medical
	profession. The student will therefore be able to appreciate the professional
	applications deriving from the knowledge of biochemistry
Soft skills	Communication skills
	The student should be able to transmit the knowledge learned in a clear and
	comprehensible way to everyone, having acquired adequate communication-
	relational skills and social skills useful for building communication between
	different subjects. The student will be stimulated to develop communication
	skills through the organization of group work in which some scientific articles will
	be analyzed and presentations structured as technical scientific reports that will be presented in the classroom in the presence of the teacher. Therefore, the
	student will be able to use all the technical and IT methods and tools for
	managing communication and will have to know the processes and logic to
	guarantee its effectiveness.
	Ability to learn
	The student must have acquired not only adequate skills and knowledge to pass
	the exam, but above all adequate learning skills and methods for the continuous
	updating and improvement of their skills in the field of biochemistry necessary
	for the medical profession.
	The learning ability will be stimulated with appropriate tools and argumentative
	techniques during the lectures
Content knowledge	INTRODUCTION TO METABOLISM
	Anabolism and catabolism. Oxidative metabolism. Main metabolic pathways:
	degradation and biosynthesis pathways. Regulation of metabolic pathways.
	CARBOHYDRATE METABOLISM
	Glycolysis. Metabolic fate of glucose-6-P. Pyruvate in aerobic and anaerobic conditions. Metabolism of fructose and galactose. Glycogen metabolism:
	glycogenosynthesis and glycogenolysis. Gluconeogenesis. Cori cycle. Pentose
	phosphate pathway.
	TRICARBOXYLIC ACID CYCLE
	Pyruvate dehydrogenase complex. Krebs cycle. Amphibolic function and
	anaplerotic reactions.
	MITOCHONDRIALBIOENERGETICS
	Oxidation-reduction reactions of biological interest. Transfer of reducing
	equivalents from the cytoplasm to the mitochondria: shuttle systems. Structure
	and function of the mitochondrial oxidative phophorylation complexes.
	Regulation of respiratory activity. Coupling mechanism and oxidative

	phosphorylation. Respiratory control index. P/O ratio.
	REACTIVE OXYGEN (ROS) AND NITROGEN (RNS) SPECIES
	Physiological role of ROS. Oxidative damage to biological macromolecules.
	Scavenger systems. Role of ROS in human aging. Nitric oxide (NO) metabolism:
	NO synthases and their tissue-specific functions
	METABOLISM OF LIPIDS
	Cytoplasmic activation of fatty acids and role of carnitine. Beta oxidation of
	saturated and unsaturated fatty acids. Metabolism of propionyl CoA. Metabolism
	of ketone bodies. Biosynthesis of saturated and unsaturated fatty acids.
	Biosynthesis of cholesterol. Triacylglycerol biosynthesis. Biosynthesis of
	membrane phospholipids.
	METABOLISM OF AMINO ACIDS
	Glucogenic and ketogenic amino acids. Catabolic fate of the amino group.
	Transamination. Oxidative and non-oxidative deamination. Transport of
	ammonia from extrahepatic tissues to the liver. Urea cycle.
	NUCLEOTIDE METABOLISM
	De novo synthesis of purine and pyrimidine nucleotides. Purine nucleotide
	recovery pathway. Synthesis of deoxyribonucleotides. Biosynthesis of
	thymidylate.
	BIOSIGNALING
	Biochemical classification of hormones and receptors. Kinetics of hormone-
	receptor binding. Main signal transduction pathways. Biosynthesis of steroid and
	thyroid hormones. Metabolism and function of vitamin D. Second messengers.
	Notes on other lipid and sphingoid bioregulators.
	INTEGRATION OF METABOLISM
	Metabolic interrelationships. Branch points of energy metabolism. Hormonal
	control of energy metabolism: insulin, glucagon. Glucose homeostasis: feeding-
	fasting cycle. Biochemical effects of hyperglycemia: glycation reactions,
	methylglyoxal, polyol pathway, PARP.
	BIOCHEMISTRY OF THE GASTRO-INTESTINAL SYSTEM
	Digestion and absorption of carbohydrates, lipids and proteins. Bile acids and bile
	pigments.
	LIVER BIOCHEMISTRY
	The metabolic peculiarities of the liver. Detoxification reactions. Cytochromes P- 450. Ethanol metabolism.
	BIOCHEMISTRY OF ADIPOSE TISSUE
	Adipose tissue metabolism. Adipokines and regulation of energy metabolism.
	Thermogenesis and uncoupling proteins.
	BLOOD BIOCHEMISTRY
	Plasma proteins. Lipoproteins: structural and metabolic characteristics. Cholesterol homeostasis. Iron homeostasis. Heme metabolism. Metabolism and
	function of vitamin K.
	BIOCHEMISTRY OF MUSCLE TISSUE
	Muscle carbohydrate, lipid and aminoacid energy metabolism. Creatine and
	creatine kinase. AMP cycle. Branched-chain amino acids.
	BIOCHEMISTRY OF NERVOUS TISSUE
	Metabolism of the nervous system. Structure and function of ion channels.
	Metabolism of the main neurotransmitters and structure of their receptors.
	Biochemical mechanisms of the sensory and visual system.
Toxts and readings	· · · ·
Texts and readings	Recommended texts Nelson & Cox, "I Principi di Biochimica di Lehninger" 8° ed., Zanichelli
	Siliprandi & Tettamanti – "Biochimica Medica – Strutturale, Metabolica e
	Funzionale" 5° ed., Ed. PICCIN

Reference texts:
Devlin "Biochimica con aspetti clinici" 5° ed., Idelson-Gnocchi
MARKS–"Biochimica Medica. Un approccio clinico"; Ed. CEA
Additional material to the reference texts, where not available online through
bibliographic reference, will be made available on the dedicated Teams platform
or through other online sharing.
Course Team channel; the access code will be communicated to students at the
beginning of the course

Assessment	
Assessment methods	The exam includes an oral interview during which the acquisition of the expected knowledge will be verified. The student will also be asked to represent the schemes of the main metabolic reactions on the blackboard (or equivalent).
Assessment criteria	The oral exam includes questions on the topics covered during the course; each answer is evaluated based on the correctness, exhaustiveness and ability to explain the topic covered by the question. The transversal skills foreseen in the learning outcomes will be verified and will contribute to the evaluation of the final grade. Honors can be awarded when the student has demonstrated to fully master the subject during the interview.
Final exam and grading criteria	The evaluation will be expressed in thirtieths. The exam is considered passed when the grade is greater than or equal to 18/30. The awarding of maximum marks with honors (30 honors) is possible.
Further information	