

CORSO DI STUDIO: Biotecnologie Industriali per lo Sviluppo Sostenibile (BISS)

ANNO ACCADEMICO: 2023-2024

DENOMINAZIONE DELL'INSEGNAMENTO:

Ingegneria cellulare e laboratorio di Tecnologie cellulari animali (5CFU) c.i. con Laboratorio di Tecnologie cellulari vegetali (3CFU)

Cell Engineering and Animal Cell Technologies Laboratory (5CFU), integrated course with Laboratory of plant cellular technologies (3CFU)

Principali informazioni sull'insegnamento			
Anno di corso	3° anno		
Periodo di erogazione	2° Semestre		
Crediti formativi universitari (CFU/ETCS):	5		
SSD	BIO/09		
Lingua di erogazione	Italiano		
Modalità di frequenza	La frequenza regolare è fortemente raccomandata		

Docente	
Nome e cognome	Rosa Angela Cardone
Indirizzo mail	Rosaangela.cardone@uniba.it
Telefono	080-5443385
Sede	Nuovo Palazzo dei Dipartimenti Biologici, IV Piano. Stanza N. 47 Campus dell'Università degli Studi di Bari "Aldo Moro" Via Orabona, 4, Bari (BA)
Sede virtuale	Microsoft Teams
Ricevimento	Il ricevimento degli studenti avviene per appuntamento, concordato direttamente con il docente telefonicamente o per email

Organizzazione della didattica				
Ore				
Totali	Didattica frontale Pratica (laboratorio, campo, esercitazione, altro) Studio individual		Studio individuale	
125	16	36	73	
CFU/ETCS				
5	2	3		

Obiettivi formativi	Il corso fornirà agli studenti le competenze necessarie per comprendere e applicare le teorie dell'ingegneria cellulare per indagare comportamenti cellulari complessi e come questi comportamenti possono essere manipolati per scopi di ricerca scientifica e industriale e per promuovere la salute umana. Gli studenti avranno l'opportunità di sviluppare abilità tecniche critiche in un campo estremamente rilevante per il lavoro futuro nei laboratori di ricerca
Prerequisiti	Nozioni di Biochimica, Biologia Molecolare, Fisiologia

Metodi didattici	Lezioni frontali con l'utilizzo del PowerPoint ed esercitazioni di laboratorio a posto singolo svolte in laboratorio.			
Risultati di apprendimento previsti				
DD1 Conoscenza e capacità di comprensione	Lo studente dovrà dimostrare di aver acquisito nozioni relative alla manipolazione cellulare (batteri, cellule di mammifero staminali e differenziate) per lo studio di proteine di interesse, sia per scopi di ricerca che per scopi industriali			
DD2 Conoscenza e capacità di comprensione applicate	Lo studente dovrà dimostrare di comprendere e di affrontare specifiche problematiche inerenti ai punti di cui sopra, con l'obiettivo finale di progettare autonomamente l'intero processo di manipolazione di cellule e animali in toto.			
DD3-5 Competenze trasversali	Autonomia di giudizio Lo studente dovrà dimostrare di possedere tutti gli strumenti necessari alla valutazione di casi di ricerca e di casi di attività industriali. Dovrà progettare autonomamente ogni fase, dalla progettazione delle strategie di manipolazione genica, fino alla valutazione della funzionalità della proteina espressa.			
	Abilità comunicative Lo studente deve dimostrare di aver acquisito la corretta terminologia tecnica necessaria alla comunicazione e alla costruzione di una rete di collaborazioni.			
	Capacità di apprendere in modo autonomo Lo studente dovrà essere capace di analizzare e comprendere testi e di approfondire problematiche attraverso bibliografia specifica.			

Contenuti di insegnamento (Programma)

Lezioni Frontali:

Introduzione all'ingegneria cellulare

Definizioni. Obiettivi. Definizione di DNA ricombinante e proteine ricombinanti

Le proteine ricombinanti

I sistemi di espressione in E.Coli e in cellule di mammifero. Produzione e purificazione delle proteine di fusione. Le applicazioni biotecnologiche del clonaggio: la produzione di prodotti farmaceutici con la tecnologia del DNA ricombinante. La produzione di insulina ricombinante. La sintesi di ormoni della crescita umani in E. coli.

Le colture cellulari

Le colture primarie e secondarie. Colture bidimensionali (2D). Colture tridimensionali (3D) scaffolds-free e in scaffolds naturali e sintetici. Gli organoidi.

Saggi di biologia cellulare

Tests di vitalità cellulare, necrosi, apoptosi, motilità e invasione cellulare.

La trasfezione mediante metodi fisici e chimici di cellule eucariotiche per l'espressione di proteine ricombinanti

L'elettroporazione, la microiniezione, la tecnica del Ca2+/fosfato, del DEAE-dextrano, dei liposomi e dei vettori virali.

Silenziamento genico

Meccanismo di RNA interference (RNAi). Complessi enzimatici coinvolti nel processo: DICER, compresso multiproteico RISC (RNA- Induced Silencing Complex). Lunghezza e scelta della posizione degli siRNA. Vettori di espressione per la produzione di siRNA: strategie, shRNA, vettori plasmidici e virali. RNAi in vitro ed in vivo: strategie sperimentali.

Editing genetico (CRISPR/CAS9)

L'analisi delle proteine ricombinanti cellulari in vitro (saggi qualitativi e quantitativi)

Estrazione e purificazione delle proteine, analisi delle proteine mediante SDS-PAGE e Western Blotting. Studi di interazione proteina-proteina: il "pull-down".

L'analisi delle proteine ricombinanti cellulari in vivo (localizzazione, dinamiche subcellulari e funzioni)

Microscopia ottica convenzionale e confocale. Tecniche di immunofluorescenza.

Cellule staminali

Definizione di rigenerazione e riparazione. Definizione e classificazione in totipotenti, pluripotenti, multipotenti Tipi di cellule staminali: embrionali, fetali, cellule staminali del cordone e della placenta, cellule staminali adulte. Derivazione e coltura delle cellule staminali embrionali. Riprogrammazione di cellule differenziate in cellule staminali pluripotenti indotte.

Laboratori (da definire in funzione delle attività di ricerca in corso)

	Preparazione di soluzioni per le colture cellulari umane e/o animali Mantenimento di colture cellulari (2D) umane/o animali stabilizzate Transfezione di transgeni in cellule umane/o animali mediante lipidi cationici. Caratterizzazione biochimica dell'espressione proteica di proteine ricombinanti Caratterizzazione funzionale (crescita, citotossicità, motilità) delle proteine ricombinanti Analisi di proteine ricombinanti mediante tecniche di Imaging (Epifluorescenza e/o Confocale)		
Testi di riferimento	T.A. Brown. "Biotecnologie Molecolari" –Zanichelli.		
Note ai testi di riferimento	Dispense e power point forniti dal docente.		
Materiali didattici	Classe Teams		

Valutazione	
Modalità di verifica dell'apprendimento	La valutazione dell'apprendimento sarà effettuata mediante esame orale. Per il superamento dell'esame è necessario che lo studente dimostri di aver raggiunto i risultati attesi (descritti sopra) ad un livello che gli permetta di discutere agevolmente, avendo buone capacità di integrare i vari argomenti trattati durante il corso, essendo questi strettamente collegati tra loro.

Criteri di valutazione	 Conoscenza e capacità di comprensione: Lo studente dovrà dimostrare di conoscere tutti i contenuti dell'insegnamento. Dovrà inoltre essere in grado di effettuare collegamenti tra i vari argomenti che compongono il programma di insegnamento. La conoscenza delle sole nozioni non viene ritenuta sufficiente.
	 Conoscenza e capacità di comprensione applicate: La capacità di applicare conoscenza e comprensione sarà verificata mediante soluzione di semplici problemi posti in modo estemporaneo.
	 Autonomia di giudizio: Lo studente durante l'esame dovrà essere in grado di sviluppare autonomamente possibili collegamenti con altre discipline del percorso di studio su argomenti proposti dai componenti della commissione d'esame. Tale capacità porterà ad una valutazione molto positiva dell'esame.
	 Abilità comunicative: Saranno valutate molto positivamente le capacità di esprimere concetti e formulare interpretazioni con proprietà di linguaggio e chiarezza espositiva facendo uso della terminologia specifica appresa durante la frequenza del corso. Lo studente dovrà inoltre dimostrare la capacità di applicare in contesti divulgativi o didattici le conoscenze acquisite.
	 Capacità di apprendere: Lo studente dovrà dimostrare di essere stato in grado di acquisire autonomamente ulteriori conoscenze sulla base di una preparazione interdisciplinare. La dimostrazione di una acquisita capacità di allargare le proprie conoscenze con un percorso di apprendimento autonomo, potrà avere un riconoscimento attraverso un incremento del voto finale fino al voto massimo.
Criteri di misurazione dell'apprendimento e di attribuzione del voto finale	La valutazione è espressa in trentesimi. La partecipazione assidua ed attiva durante il corso di insegnamento sarà apprezzata. Per il voto finale sono tenute in considerazione la capacità di collegare i contenuti di diverse conoscenze, la chiarezza e precisione espositiva, la proprietà di linguaggio, la capacità di riprodurre grafici delle funzioni studiate.

Altro	

COURSE OF STUDY: Industrial Biotechnology for Sustainable Development (BISS)

ACADEMIC YEAR: 2023-2024

ACADEMIC SUBJECT: Cell Engineering and Animal Cell Technologies Laboratory

General information			
Year of the course	3°		
Academic calendar (starting and ending date)	2 nd semester		
Credits (CFU/ETCS):	5		
SSD	BIO/09		
Language	Italian with slides in English		
Mode of attendance	Regular attendance is strongly recommended		

Professor/ Lecturer	
Name and Surname	Rosa Angela Cardone
E-mail	rosaangela.cardone@uniba.it
Telephone	0039-080-5443385
Department and address	Nuovo Palazzo dei Dipartimenti Biologici, IV Floor. Room N. 47. Campus dell'Università degli Studi di Bari "Aldo Moro". Via Orabona, 4, Bari (BA).
Virtual room	Microsoft Teams
Office Hours	Students will be received by appointment, agreed directly with the teacher by telephone or email

Work schedule				
Hours				
Total	Lectures		Hands-on (laboratory, workshops,working groups, seminars, field trips)	Out-of-class study hours/Self study hours
125	16		36	73
CFU/ETCS				
5	2		3	

	The course will provide the students with the necessary skills to understand and apply cellular engineering theories to investigate complex cellular behaviour and how these behaviours can be manipulated to promote human health. Students will have the opportunity to develop critical technical skills in this field relevant to future work in research laboratories
Course prerequisites	Elements of Biochemistry, Molecular Biology, Physiology

Teaching strategie	- Frontal lessons with PPT support
	- Frontal lessons with video projection and comments
	- Single seat laboratory exercises
	- Virtual laboratory activities with PPT and commented videos

Expected learning outcomes in terms of	
Knowledge and understanding on:	Students will demonstrate to have acquired notions related to cell manipulation (i.e. bacteria, yeasts, mammalian stem and differentiated cells) to study the structure and function of proteins of interest, both for research and industrial purposes.
Applying knowledge and understanding on:	Students will demonstrate to understand and address specific issues related to the above points, with the ultimate goal of independently designing the entire process of manipulating cells and animals as a whole.
Soft skills	Students should demonstrate the acquisition of all the necessary tools for the evaluation of both research and industrial activity cases. They should be able to independently design each experimental phase, from the design of specific genes to their manipulation strategies to the characterization and evaluation of the functionality of the expressed protein.

	Communicating knowledge and understanding Students should demonstrate to have acquired the correct technical
	Students should demonstrate to have acquired the correct technical terminology necessary for both communication and the construction of a network of collaborations.
	Capacities to continue learning
	Students must be able to analyze and understand texts and to deepen problems through specific bibliography
Syllabus	
Content knowledge	Introduction to cellular engineering
	Definitions. Targets. Definition of recombinant DNA and recombinant proteins
	Recombinant proteins
	The expression systems in E.Coli and in mammalian cells. Production and purification of fusion proteins. The biotechnological applications of cloning: the production of pharmaceutical ingredients with recombinant DNA technology. The production of recombinant insulin. The synthesis of human growth hormones in E. coli.
	Cell cultures
	Primary and secondary crops. Two-dimensional (2D) crops. Three-dimensional (3D) scaffolds-free cultures and natural and synthetic scaffolds. The organoids.
	The transfection of eukaryotic cells using physical and chemical methods for the expression of recombinant proteins Electroporation, microinjection, the technique of Ca2 + / phosphate, DEAE-dextran, liposomes.
	Gene silencing
	Mechanism of RNA interference (RNAi). Enzyme complexes involved in the process: DICER, RISC multi-protein compress (RNA - Induced Silencing Complex). Length and choice of position of siRNAs. Expression vectors for siRNA production: strategies, shRNA, plasmid and viral vectors. RNAi in vitro and in vivo: experimental strategies.
	Gene Editing (CRISPR/CAS9)
	In vitro analysis of cellular recombinant proteins (qualitative and quantitative assays)
	Protein extraction and purification, protein analysis by SDS-PAGE and Western Blotting Protein-protein interaction studies: the "pull-down". Cell viability, apoptosis, cell migration and invasion assays.
	In vivo analysis of cellular recombinant proteins (localization, subcellular dynamics and functions) Conventional and confocal optical microscopy. Immunofluorescence.

	Stem Cells Definition of regeneration and repair. Definition and classification in totipotent, pluripotent, multipotent Types of stem cells: embryonic, fetal, cord and placental stem cells, adult stem cells. Derivation and culture of embryonic stem cells. Reprogramming of differentiated cells into induced pluripotent stem cells.
	Laboratories (to be defined according to the research activities in progress)
	Maintenance of stabilized human (2D) cell cultures. Set up of 3D cell cultures Transfection of recombinant proteins in eukaryotic cells by cationic lipids. Protein expression characterization of recombinant proteins Functional characterization of recombinant proteins: growth, cytotoxicity and motility assays Analysis of recombinant proteins by imaging techniques (Epifluorescence and / or Confocal)
Texts and readings	T.A. Brown. "Biotecnologie Molecolari" –Zanichelli. Handouts and PPT slides provided by the teacher.
Notes, additional materials	All information concerning the texts and scientific articles included in the program is available from the teacher or online.
Repository	Microsoft Teams

Assessment	
Assessment methods	Oral examination
	To pass the exam it is necessary that the student demonstrates that he/she has achieved the expected results (described above) at a level that allows him/her to easily discuss, having good ability to integrate the various topics covered during the course, as these are closely connected between them.
Final exam and grading criteria	A grading scale from 18/30 to a maximum of '30/30 cum laude' will be used
Further information	